Machine learning applied to quality management - A study in ship repair domain
نویسندگان
چکیده
The awareness about the importance of knowledge within the quality management community is increasing. For example, the Malcolm Baldrige Criteria for Performance Excellence recently included knowledge management into one of its categories. However, the emphasis in research related to knowledge management is mostly on knowledge creation and dissemination, and not knowledge formalisation process. On the other hand, identifying the expert knowledge and experience as crucial for the output quality, especially in dynamic industries with high share of incomplete and unreliable information such as ship repair, this paper argues how important it is to have such knowledge formalised. The paper demonstrates by example of delivery time estimate how for that purpose the deep quality concept (DQC)—a novel knowledge-focused quality management framework, and machine learning methodology could be effectively used. In the concluding part of the paper, the accuracy of the obtained prediction models is analysed, and the chosen model is discussed. The research indicates that standardisation of problem domain notions and expertly designed databases with possible interface to machine learning algorithms need to be considered as an integral part of any quality management system in the future, in addition to conventional quality management concepts. # 2006 Elsevier B.V. All rights reserved.
منابع مشابه
Machine learning algorithms in air quality modeling
Modern studies in the field of environment science and engineering show that deterministic models struggle to capture the relationship between the concentration of atmospheric pollutants and their emission sources. The recent advances in statistical modeling based on machine learning approaches have emerged as solution to tackle these issues. It is a fact that, input variable type largely affec...
متن کاملDust source mapping using satellite imagery and machine learning models
Predicting dust sources area and determining the affecting factors is necessary in order to prioritize management and practice deal with desertification due to wind erosion in arid areas. Therefore, this study aimed to evaluate the application of three machine learning models (including generalized linear model, artificial neural network, random forest) to predict the vulnerability of dust cent...
متن کاملImage alignment via kernelized feature learning
Machine learning is an application of artificial intelligence that is able to automatically learn and improve from experience without being explicitly programmed. The primary assumption for most of the machine learning algorithms is that the training set (source domain) and the test set (target domain) follow from the same probability distribution. However, in most of the real-world application...
متن کاملMachine Learning and Citizen Science: Opportunities and Challenges of Human-Computer Interaction
Background and Aim: In processing large data, scientists have to perform the tedious task of analyzing hefty bulk of data. Machine learning techniques are a potential solution to this problem. In citizen science, human and artificial intelligence may be unified to facilitate this effort. Considering the ambiguities in machine performance and management of user-generated data, this paper aims to...
متن کاملA Machine Learning Approach to No-Reference Objective Video Quality Assessment for High Definition Resources
The video quality assessment must be adapted to the human visual system, which is why researchers have performed subjective viewing experiments in order to obtain the conditions of encoding of video systems to provide the best quality to the user. The objective of this study is to assess the video quality using image features extraction without using reference video. RMSE values and processing ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computers in Industry
دوره 58 شماره
صفحات -
تاریخ انتشار 2007